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We study wave propagation in a disordered system of scatterers and derive a 
renormalized cluster expansion for the optical potential or self-energy of the 
average wave. We show that in the problem of multiple scattering a repetitive 
structure of Ornstein-Zernike type may be detected. We derive exact 
expressions for two elementary constituents of the renormalized scattering 
series, called the reaction field operator and the short-range connector. These 
expressions involve sums of integrals of a product of a chain correlation 
function and a nodal connector. We expect that approximate calculation of the 
reaction field operator and the short-range connector allows one to find a good 
approximation to the self-energy, even for high density of scatterers. The theory 
applies to a wide variety of systems. 

KEY WORDS: Cluster expansion; multiple scattering; disordered systems; 
optical potential; self-energy. 

1. I N T R O D U C T I O N  

In this article we deal with the theory of linear transport in a disordered 
system of scatterers with a fixed geometry. (1'2) We derive an exact 
renormalized cluster expansion for the transport operator or coefficient 
characterizing the propagation of the average wave. The theory may be 
formulated in quantum mechanics as well as for classical continuum or 
lattice systems. (s'4) In quantum mechanics the desired transport quantity 
is the optical potential or self-energy. In classical electromagnetic wave 
propagation it is the refractive index, and in electrostatics it is the effective 
dielectric constant. Other examples to which the theory applies are the 
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effective viscosity of fluid suspensions, the effective rate constant in 
diffusion-controlled reactions, etc. 

We develop the theory on the basis of the cluster expansion for the 
effective dielectric constant of a suspension of dielectric spheres, derived 
some years ago by Felderhof e t  al. ~5~ This article built on earlier work by 
Finkel'berg, (6'7) Batchelor, ~8) and Jeffrey. (9'1~ The cluster expansion was 
applied to the problem of effective viscosity by Schmitz (11) and to the 
problem of quantum mechanical wave propagation and to the rate coef- 
ficient of diffusion-controlled reactions by Mattern and FelderhofJ 12'13) We 
show here that the cluster expansion may be resummed effectively. In 
graph-theoretic language, we perform a renormalization or topological 
reduction. (14) 

The renormalization procedure we propose is closely related to that 
presented by Wertheim (15) for a system of polarizable point dipoles in the 
theory of nonpolar dielectrics. By an analysis of the many-body scattering 
sequences Wertheim detected a repetitive structure which allows a for- 
mulation in terms of equations of the Ornstein Zernike type. We show here 
that his analysis may be generalized. Apart from dropping the assumption 
of point scatterers, we also introduce important new features. 

Our final result allows us to evaluate the self-energy in a relatively 
simple way. The self-energy is expressed via equations of Ornstein-Zernike 
type in terms of elementary constituent operators which may be evaluated 
by averaging scattering operators defined from the s-body scattering 
problem over the s-body positional correlation functions, which are 
assumed known. It may reasonably be expected that the two- and three- 
body contributions to the elementary constituents already provide a good 
approximation. The renormalization structure of the theory suggests that 
the resulting values of the self-energy are accurate even at high density of 
the scattering system. 

Exactly the same formalism applies to the calculation of material 
properties in related systems. Thus, we may evaluate the effective dielectric 
constant in a liquid or suspension of polarizable particles, the effective 
viscosity of suspensions, the rate of diffusion-controlled reactions in a 
disordered system of static sinks, the short-time diffusion coefficient of a 
suspension of Brownian particles, the effective diffusion coefficient in a 
disordered system of static impurities, etc. As a first application of the 
theory we consider in a following article the theory of nonpolar dielectrics. 

In the following we present our theory in purely algebraic terms. The 
reader may find it convenient to develop a graph-theoretic language and 
illustrate the equations with the aid of diagrams. We have preferred a 
concise algebraic formulation above a graphical presentation because the 
latter would require an excessive amount of explanation. 
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2. F O R M U L A T I O N  OF T H E  P R O B L E M  

We consider an m-component vector wave propagating in a disordered 
static array of scatterers. Our aim is to determine the effective scattering 
properties of the medium for the average wave. The time-independent 
linear wave equation for a particular configuration of scatterers reads 

~o~,(1 ..... N; r ) -  V(1 ..... N) ~(1 ..... N; r ) = s ( r )  (2.1) 

where 5~ is the wave operator for the uniform medium, and V(1,..., N) is 
the potential operator, which depends on the configuration of scatterers. 
An example of the wave operator is 5~ = E - H 0 ,  where E is the energy 
and Ho the Hamilton operator for a free particle. Finally, s(r) in (2.1) is a 
source term, which has been included for mathematical convenience. We 
assume that the scattering potential consists of a sum of identical one-body 
terms 

N 

V(1 ..... N) = ~" V(j) (2.2) 
j=l  

The label j in V(j) indicates the parametric dependence on the position of 
the scattering center Rj and possibly orientational variables s 

We assume that the disorder of the system is described by a known 
probability distribution W(1 ..... N). The distribution is assumed normalized 
to unity and symmetric in the labels 1 ..... N. The partial distribution 
functions 

N! 
n(1,...,s)=(U_s)!f...fd(s+l)...dSW(1,...,U) (2.3) 

give the probability of finding a configuration of s scatterers whatever the 
configuration of the remaining N - s  scatterers. The integrations in (2.3) 
are over positions {Rj} and orientational variables {Oj}. We assume that 
the system in volume f2 on average is spatially uniform and possesses a 
well-defined thermodynamic limit N ~  oo, O ~ oo with uniform density 
n(1) and translationally invariant distribution functions n(1,..., s). 

Let 

~bo(r ) = f Go(r - r')- s(r') dr' (2.4) 
i 

be the solution in the absence of scatterers, where G o ( r - r ' )  is the free- 
space Green's function corresponding to outgoing waves. Defining the 
N-body T-matrix by 

V(1 ..... N) if(1 ..... N) = T(1 ..... N) t) o (2.5) 
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one obtains for the self-energy operator of the average wave, defined by 
( V ~ ) = X ( ~ , ) ,  

X= ( T ) ( I  + Go(T))  -I (2.6) 

where the average is over the probability distribution W(1 ..... N). The 
self-energy z(q) is defined in the thermodynamic limit by 

lim (q IX] q ' )=  87c3z(q)6(q-q') (2.7) 
N ~  
Q ~ o o  

where we employ the notation 

(q [AI q') = f [-exp( - i q "  r)] A(r, r ')[exp(iq �9 r ')] dr dr' (2.8) 

The self-energy may be used to evaluate the average Green's function, 
defined by (~b) = Gays, 

Gay(q) = [co(q) -- z(q)] -1 (2.9) 

where co(q) is defined by 

(q I~01 q')= 8~z3co(q)6(q-q') (2.10) 

The self-energy x(q) is the key quantity to be calculated. Both co(q) and 
~(q) are tensors of rank m. 

3. C L U S T E R  E X P A N S I O N  

The formal solution of the wave equation (2.1) may be written in the 
form 

$(1 ..... N) = K(1 ..... N) (Po (3.1) 

where K(1 ..... N) is a linear operator depending on the particle con- 
figuration. The average wave function is given by 

(~b) = d l . . . d N  W(1,..., N) K(1,..., N) ~b o (3.2) 

We may express this m terms of a sum of integrals over the partial 
distribution functions by introducing cluster operators L as follows 
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K(~)= L(~5)= I 

K(1)= L(1) + L(~5) 

K(1, 2) = L(1, 2) + L(1) + L(2) + L ( ~ )  
(3.3) 

Here ~ denotes the empty set, so K ( ~ )  is the identity/. The general rule is 

K(sV)= ~ L(s~') (3.4) 

where W is a set of labels and the sum is over all subsets of W. The inverse 
of this rule is 

L(sV)= y' (--1)N--MK(,//~) (3.5) 
.~t" c o4 p 

where N and M are, respectively, the number of labels in Jr  and ~/. 
Inserting (3.4) in (3.2), remembering that the number of subsets of s objects 
out of N objects is [N!/(N-s)! s!], and using the definition (2.3) of the 
partial distribution functions, we obtain 

~ ) =  ~. dl...dsn(1 ..... s) L(1 ..... s )~  0 
s = 0  

(3.6) 

For a finite number N of scatterers, 
n(1 ..... s) vanishes for s >  N. Similarly, 
follows: 

the partial distribution function 
we define cluster operators M as 

0 = M(,Q~) 

V(1)K(1)=M(1) 

V(1, 2) K(1, 2) = M(1, 2) + M(1) + M(2) 

V(1, 2, 3)K(1, 2, 3)=  M(1, 2, 3)+  M(1, 2) + M(1, 3)+ M(2, 3) 

+ M(1)+ M(2)+ M(3) 

(3.7) 

In analogy to (3.5), we have the general rule 

M(sV)= ~ (--1) N-M V(Jg)K(Jg) (3.8) 
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We note that L(JV')= GoM(Jff), except when JV is the empty set. In the 
same manner as (3.6), we obtain the average 

1 
( V t p ) =  ~ ~ f d l . . . d s n ( 1  ..... s) M(1 ..... s)~0 

s = O  

We introduce the short-hand notation 

(3.9) 

s = O  

From (2.5) and (3.9) we find that the average T-matrix is given by 

( T )  = (n, M) (3.11) 

Similarly, we find from (3.6) 

I +  G o ( T )  = (n, L)  (3.12) 

The self-energy operator defined by (2.6) may therefore be written 

X =  (n, M)(n, L) l (3.13) 

Writing the inverse as a geometric series and ordering according to the 
number of scatterers involved in each term, we find that the self-energy 
operator may be cast in the form of a cluster expansion ~s) 

X= k Xs (3.14) 
s = l  

where 

x ~ ( -  1) k i a(B) n(B~) M(B1)n(B2)  L(Bz)- . .n(Bk)L(Bg) (3.15) 
(B) 

Here the sum in the integrand is over all partitions of the labels 1 ..... s into 
disjoint subsets, with the first s~ labels appearing in the first subset, the 
next s2 labels in the second subset, etc. Within the sum, k = k ( B )  is 
the number of subsets in the partition (B), and B1 is the first subset, B2 the 
second ..... and Bk the kth. Furthermore, 

a(B) = 1 sit (3.16) 
I j =  1 
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is the symmetry number of the partition. We represent a partition into k 
disjoint (i.e., with no label in common) subsets by (B)= (B1 I B2 I'--I Bx) 
with slashes indicating the partitioning. 

So far our results are exact for any finite number N of scatterers. In 
order to justify a statistical treatment we must envisage the thermodynamic 
limit N --+ oo, f2 ~ oo at constant n = N/g?. One expects that in this limit the 
self-energy operator X exists and becomes translational invariant, i.e., the 
kernel X(r,r ') in the limit depends only on the difference r - r ' .  
The existence of the thermodynamic limit independent of the shape of the 
sample will be made plausible in the sequel. The existence has been proven 
for nonoverlapping scatterers of finite range in electrostatics (s) and in the 
case of the Schr6dinger equation for a scalar particle. <123 We stress that the 
thermodynamic limit exists only for the ratio in (3.13), but not for the two 
operators in (3.11) and (3.12) separately. This is particularly clear in 
electrostatics, where the sample shape dependence of (3.11) and (3.12) is 
easily shown on macroscopic grounds from Maxwell theory. 

4. MULTIPLE SCATTERING EXPANSION 

Physically the decomposition of the many-body potential into a sum 
of one-body potentials according to (2.2) will occur because the scatterers 
are spatially separated and do not overlap. Correspondingly, the many- 
body scattering operators may be analyzed in terms of a multiple scattering 
expansion. To derive this expansion, we start from the identity 

N 

V(1 ..... N) ~(1,..., N) = ~ V(j) K(1,..., N) ~0 (4.l) 
j = l  

which follows from (2.2) and (3.1). Combining this with 

K(1 ..... N) ~9o = ~o + Go V(1,..., N) ~(1 ..... N) (4.2) 

which follows from (2.1), (3.1), and the definition of the Green's function, 
we find the integral equation 

K(~V)=I+Go ~ V(j)K(JV') (4.3) 
j e l l  

Solving this equation by iteration and collecting terms corresponding to 
repeated interactions with the same scatterer, we obtain ~5) 

l 

K( '~)  = I +  ~ Z '  H GoM(j~) (4.4) 
l = 1  [ j ]  i = l  

822/51/1-2-5 
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where the second sum is over all sequences I-j] of l labels (counting 
repetitions) selected from the set Y with the condition, indicated by the 
prime, that no label be repeated in succession. For example, if JV" consists 
of the two labels 1 and 2, then, indicating the terms in (4.3) by the 
corresponding sequences, 

K(1, 2 ) = I +  ([1] + [ 2 ] ) +  ([12] + [21]) 

+ ([121] + [212] )+  ... (4.5) 

The multiple scattering expansion (4.4) is also called the binary collision 
expansion (16'17) or the single-site expansion. (l) 

To get the multiple scattering expansion of the operator L, we put the 
expansion (4.4) of K in the expression (3.5), which gives (5) 

l 
L(~A/') = ~ ~" l~ GoM(ji) (4.6) 

I--N {jJ i=1 

where the second sum is over all sequences [ j ]  of l labels selected from the 
set Jg" with the conditions, indicated by the double prime, that no label be 
repeated in succession and that every label in JV occur at least once in the 
sequence. For a proof of this identity we refer to Ref. 5. In analogy to (4.6), 
the multiple scattering expansion of the cluster operator M defined in (3.8) 
reads 

l 

m ( ~ / ' )  = ~ Z "  m ( j l )  H G o m ( j i )  (4.7)  
l = N [j] i = 2 

In the following it will be useful to define related operators for which the 
first and last scatterers in any sequence are specified. We denote such an 
operator by 

M~(~A/')=O(i)M(~#) O(j) (4.8) 

where O(i) and O(j) have the effect of specifying that the first scatterer is i 
and the last one is,/'. The scattering operator Mi/r ,  r'; JV') is localized in the 
sense that it vanishes unless the field variable r is located inside the range 
of scatterer i and r' is located inside the range of scatterer j. When summing 
over i and j 

N 
M(~A/)= y'  Mo(,A/ ) (4.9) 

0=1 

and the operator M is localized correspondingly. 
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We may further simplify the analysis by decomposing the cluster 
operators L and M into a sum of terms corresponding to different 
permutations of the labels. Thus, we define 

l 
E(~) = ~ •'" H GoM(j,) (4.10) 

l = N  [j] i=1 

where the second sum is over all sequences [ j ]  of l labels selected from the 
set Jg" with the conditions, indicated by the triple prime, that no label be 
repeated in succession, that every label in Y occur at least once in the 
sequence, and that a label j can only occur for the first time in the sequence 
if the preceding labels have appeared already. Thus, the operator L(123) is 
given by 

L(123)= ( [123] )+( [1213]  + [1231] + [1232])+ ... (4.11) 

The corresponding expression for L(123) has 3! as many terms. Similarly, 
we define M ( Y )  by 

l 
2 ~ ( Y ) =  ~ •'" M(jl) ~ GoM(jJ (4.12) 

l = N  [j] i=2 

The cluster integral Xs given by (3.15) now simplifies to 

x~=f.. . fdl. . .ds 

x ~ ( -  1) ~-l n(B1)/~'(Ol) n(B2) L(B2)... n(B~) L(Bk) (4.13) 
(B) 

where again the sum is over all partitions (B) of the labels 1 ..... s into k dis- 
joint subsets with the first Sl labels appearing in the first subset, the next s2 
labels in the second subset, etc. The first three cluster integrals read 
explicitly 

X 1 = f d l  F/(1) J ~ ( 1 )  

X2 = d l  d2[n(12) 3~(12)-n(1) n(2) 34(1) s 

X 3 = d l  d2 d3[n(123) ~r n(3) M(12) E(3) 

- n ( 1 )  n(23) J14(1)/5(23) + n(1) n(2) n(3) 55r (4.14) 
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In principle the cluster expansion (3.14) with the cluster integrals (4.13) 
may be used for explicit calculation. However, it turns out that it is advan- 
tageous to perform a rearrangement of terms based on a nodal analysis of 
the multiple scattering expansion. 

5. N O D A L  A N A L Y S I S  

The multiple scattering expansion allows an analysis of the various 
scattering sequences and a classification according to complexity. We 
return to the average in (3.9), which may now be written in the form 

Z f dl...dsn(1 ..... s) (1 ..... ,)Oo (5.1) 
s - - I  

The operator 2~r(Y) may be decomposed into a sum of contributions 
corresponding to a partition of the set of labels into connected subsets as 
follows: 

M ( Y )  = 2 D(C) (5.2) 
C 

where C = (C1 IC2 J "-" I Ck) is a partition of the ordered set of labels into 
subsets of at least two elements such that each subset has precisely one 
label in common with the preceding subset. To classify the partitions it is 
convenient to arrange them into a lattice of rows. The first (top) row con- 
tains the partition into one subset, i.e., the set of labels itself; the second 
row contains the partitions into two subsets, etc. In the lattice each par- 
tition is associated with those partitions in the row above that are obtained 
by merging adjoining subsets, i.e., by removing a slash and one of the two 
common labels. Thus, for s = 2, the lattice consists of a single row (12) and 
for s = 3 the lattice is 

( 1 2 3 )  

(12113) (12123) 

while for s = 4 

(1234) 

(123114) (121134) (123134) (121234) (123124) 

(12113114) (12113134) (12123134) (12123124) 
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This arrangement results in a partial ordering of the partitions (denoted by 
~<) with (C)<~ (C') if the partition (C') is either the same as the partition 
(C) or can be obtained from (C) by removing one or more slashes. 

We now classify the scattering sequences according to their nodal 
points. A label j is a nodal point of a scattering sequence [12...] if at that 
point the label j may be replaced by J lJ such that all labels to the left of the 
slash have only the label j in common with those on the right. A label j 
may occur more than once as a nodal point in a scattering sequence. After 
identifying all nodal points and indicating them by slashes in the above 
manner, the scattering sequence [12. .  "JllJl"" "J2 [ "" "] may be associated 
uniquely with the corresponding partition (C~1C21---[C~). The chain 
operator D(C) is the sum of all those scattering sequences in .~r as 
defined in (4.10), that have nodal points associated with the partition 
C-(C1 I C21...ICO. Conversely, since 3~r is the complete sum of 
scattering sequences satisfying the conditions listed following (4.8), it is 
given by (5.2). 

It will be convenient to have an expression for the chain operator 
D(C). We write 

Dll(C1 iC2 t"" IG,) 

= M(1) Nlj~(C~) M(j~) Njlj2(C2) M(j2)..-Njk_,,(Ck) M(I) (5.3) 

where Ji is the label of a nodal point and l is any label from the last subset 
C~. Furthermore, the nodal connector N(Ci) is irreducible in the sense that 
it cannot be further decomposed by the identification of a nodal point. The 
complete chain operator D(C) is obtained by summing over the labels ! 
from Ck, 

D(C) = ~ D,,(C, IC2 I---ICO (5.4) 
I t  Ck 

By definition the first label in all scattering sequences contributing to D(C) 
is 1. 

6. O R N S T E I N - Z E R N I K E  S T R U C T U R E  

In this section we show that the definition of nodal points allows one 
to detect a repetitive structure of the Ornstein-Zernike type. It follows from 
(5.2) and (5.3) that ~ r ( X )  may be decomposed as 

M(~/') = M l l ( X )  + -~Sqa(Y) (6.1) 

where Mll(JV') is the sum of all chain operators for which 1 is both the 
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first and the last scatterer, and h(tld(Jg" ) is the sum of terms for which the 
last scatterer differs from 1. Explicitly, 

J~rl 1 ('/1/') = E D l l ( C )  
c 

(6.2) 
] ~ l d ( ~ / ' ) = E  E Dll(C) 

c l~Ch 
l~l  

In the case of Dll(C) the label 1 must occur in every subset. Corresponding 
to (6.1), we write (5.1) 

(V~)=[ fd ln ( l )B(1 )+fd ld2n( ! )n (2 )A( l ,  2)]~o (6.3) 

where the bridge operator B(1 ) is defined by 

B ( 1 ) = M ( 1 ) +  ~ fd2.. .ds[n(1 ..... s)/n(1)]~IXl(1 ..... s) (6.4) 
s--2 

This operator includes all scattering sequences in which 1 is the first and 
last scatterer. Only 1 can occur as a nodal point in these sequences. In the 
second term in (6.3) the label 2 is used in a generic manner and indicates 
any label different from 1. The operator A(1, 2), defined by (6.3), is given 
by an expression analogous to (6.4) involving the operator Mid(Y). 

The bridge operator B(1) describes the effect of a single scatterer 
renormalized by its environment. This suggests that we decompose the 
operator A(1, 2) as 

A( 1, 2) = B(1 ) H(1, 2) B(2) (6.5) 

which defines the pair connector H(1, 2). The latter describes propagation 
via other renormalized scatterers. This is expressed by the Ornstein- 
Zernike type equation 

H(1,2)=C(1,2)+fd3n(3)C(1,3)B(3)H(3,2 ) (6.6) 

which defines the direct connector C(1, 2). 
One of the contributions to the direct connector C(1, 2) will be 

provided by direct propagation between the two scatterers as given by the 
vacuum Green's function Go. We subtract this contribution and define the 
short-range connector S(1, 2) by 

C(1, 2 )=  Go+ S(1, 2) (6.7) 
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The corresponding pair connector F(1, 2) is given by the Ornstein-Zernike 
equation 

F(1, 2) --- S(1, 2) + f d3 n(3) S(1, 3) B(3) F(3, 2) (6.8) 

Substituting the above equations in (6.3) and comparing with the solution 
found from the average equations 

(V~b)=X(1-Go.Y) ~o (6.9) 

we see that the self-energy operator X is given by 

X=fdln(1)B(1)+fdld2n(1)n(2)B(1)F(1,2)B(2) (6.10) 

Thus, it is sufficient to study the pair connector F(1, 2), which in turn is 
given by the short-range connector S(1, 2). 

The reader may be convinced of the validity of (6.10) by writing (6.9) 
as a geometric series, substituting (6.10), and employing the integral 
equation (6.8) in iterated form. A comparison with (6.3) with use of (6.5) 
and the iterated form of (6.6) with (6.7) then demonstrates the validity of 
(6.10). 

In (6.3)-(6.6) we have adopted notation employed by Wertheim (15) in 
the theory of nonpolar dielectrics. However, our definition (6.7) of the 
short-range connector S(1, 2) differs from Wertheim's. 

We note that the equations developed in this section are valid for the 
finite system. In the final equation (6.10) the thermodynamic limit may be 
taken. Both the bridge operator B(1) and the pair connector F(1, 2) are 
expected to have a well-defined thermodynamic limit independent of 
sample shape. 

7. R E A C T I O N  FIELD O P E R A T O R  

In this section we express the bridge operator B(1) defined in (6.4) in 
terms of the chain operators D(C) given by (5.3) and correlation functions 
describing the statistical distribution of scatterers. In (6.4) the kernel 
2~rll(Y ) is given by (6.2) with the operators 

D,,(CI IC2 I ""ICk) 

= M(1) NI~(C1) M(1) NH(C2) M(1). . .Nll(Ck) M(1) (7.1) 
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The label 1 must occur in every subset. The normalized s-particle dis- 
tribution functions g(1 ..... s) are defined by 

g(1,...,s)=n(1,...,s) n(j) 

and the corresponding correlation functions h(1,..., t) by 

(7.2) 

where Qt is a subset of t labels from 1,..., s and the double product is over 
all subsets with at least two labels. For example, for s = 2 

with 

g(1, 2 )=  1 +h(1,  2) (7.4) 

and for s = 3 

g(1,2,3)=[l+h(12)][l+h(13)][l+h(23)][l+h(123)] (7.5) 

It is clear that, when the expansion (7.3) is substituted in (6.4) with 
A~tu(1 ..... s) expanded into chain operators, different groups of labels of 
each partition may or may not be connected by correlation functions. If 
there is no correlation between any of the labels, different from 1, to the left 
of a factor M(1) and those, different from 1, to the right, then the 
corresponding integral in (6.4) factorizes. Hence we recognize a repetitive 
structure and may write 

B(1) = M(1)[1 - S(1) M(1)] -1 (7.6) 

where the operator S(1) may be expressed as a sum of integrals over a 
product of correlation functions h and a nodal operator Nn(C)  defined by 

Nn(C)=Nu(C~)M(l)Nu(C2)M(1)...N11(Ck) (7.7) 

so that Du(C)=M(1)N11(C)M(1). We call S(1) the reaction field 
operator. We decompose S(1) according to the number of labels involved 
and write 

S(1)= ~ Ss(1) (7.8) 
s = 2  

Ss(1 ) = ~ f d2.. .  ds n(2).-, n(s) k(C) Nu(C) 
C 

(7.9) 

g(1,.. . ,s)= 1] l~ [1 +h(Qt) ]  (7.3) 
t = 2  Qt 
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where k(C) is a correlation function corresponding to the partition C of s 
labels. We find the correlation functions k(C) by substituting (7.8) in (7.6) 
and comparing with (6.4). 

The term M(1)Nu(C1)M(1) in (6.4) can be obtained only from 
M(1) S(1)M(1)  in (7.6) and yields the relation 

k(C~)= g(Cl) (7.10) 

The term M(1) Nl1(C1) M(1) Nl1(C2) M(1) follows from 

M(I) S(1) M(1)§  M(1) 8(1) m(1) 8(1)M(1) 

and yields 

k(C1 ]C2) + k(C1) k(C2) = g(C1, C2) (7.11) 

where (C~, C2) indicates that the sets have been joined. Combining (7.10) 
and (7.1l), we can write 

k(C1 J C2) = k(C1, C2) - k(C~) k(C2) (7.12) 

This relation may be generalized. As an example, we consider three subsets. 
Then we obtain as above 

k( C1 I C21(73) + k(C1) k( C2 IC3) 

+ k(CI[C2)k(C3)+k(C1)k(Cz)k(C3)=g(C1, C2, C3) (7.13) 

On the other hand, considering the union of C2 and C3, we also have 

k(C~ I C2, C3) + k(C1) k(C2, C3) = g(C~, C2, C3) (7.14) 

Subtracting the latter two identities and using (7.12), we find 

k(C, IC21C3)=k(C~IC2, C3)-k(C~ICz)k(C3) (7.15) 

By induction we prove the general rule 

k(C, I " "  tG IG+,  I " "  I Ck)--k(C, I " "  I C j, Cj+ | I " "  IG)  

-k (C l l . . . IC j )k (C j+ , t . . . ICk)  (7.16) 

This identity suggests that we call k(C) a chain correlation function. We 
may regard (7.16) as a recurrence relation, which together with (7.10) 
allows one to construct the chain correlation functions of all orders. The 
general expression in terms of the g-functions may be formulated with the 
aid of the lattice of partitions introduced in Section 5. It is given by 

k(C)= ~' ( -  1)k'- ~g(C'~) g(C'2).., g(C'k,) (7.17) 
(c')>~(c) 
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where the sum is over the given partition together with those partitions in 
all the rows above that can be obtained from it by removing slashes, and 
k' =k(C ' )  is the row number of C'. The relation (7.17) is easily proven by 
induction with use of (7.16) specialized to the case where k=j+ 1, as in 
(7.15). We remark that the block distribution functions defined in I have 
the same structure (7.17) and hence satisfy an identity analogous to (7.16). 

To conclude this section, we note that the partitions (C) occurring in 
(7.9) are special, in that every subset contains the label 1. However, the 
relations for the chain correlation functions k(C) developed above are valid 
more generally. 

8. S H O R T - R A N G E  C O N N E C T O R  

In this section we show that the short-range connector S(1,2) 
introduced in Section 6 may also be expressed as a sum of integrals over a 
product of a chain correlation function and a nodal connector. 

The operator A(1, d) defined in (6.3) is given by 

A(1, d)= ~ f d2... ds[n(1,..., s)/n(1) n(d)] Mxd(1,..., s) 
s- -2  

(8.1) 

According to (5.2) and (5.3), the operator MIj(1,..., s) may be expressed as 
a sum of products of single-particle scattering operators and nodal connec- 
tors. We consider first the simple two-particle contribution to (8.1). It is 
given by 

A2(1, 2 )=  g(1, 2) M(1) N12(1, 2) M(2) (8.2) 

We write this in the form 

A2(1, 2) = M(1)[G O + $2(1,2)] M(2) (8.3) 

with 

$2(1,2) = g(1, 2)[N12(1, 2 ) -  Go] + h(1, 2) Go (8.4) 

Here the separation into two terms has the advantage that both are 
relatively short range. The combination N12(1 , 2 ) - G  0 connects the two 
scatterers by at least three Green's functions, as may be seen from the mul- 
tiple scattering expansion. 

The nodal connector Nij,(Ci) has a contribution G o whenever the two 
labels j and j '  of the nodal point differ. If the first nodal point and all the 
labels preceding it differ from the second nodal point and all the labels 
following it, and if these two sets of labels are uncorrelated, then the 



Cluster  Expansion for Multiple Scattering 73 

propagator Go is an articulation line serving as the only link between two 
distinct parts of the scattering sequence. We take care of this weak link by 
the term G o in (6.7). The remaining contribution to the direct connector 
C(1, 2) is the short-range connector S(1, 2). 

By substitution of (6.6) and (6.7) into (6.5) and iteration it is clear that 
A(1, 2) is a sum of contributions given by chains of bridge operators con- 
nected either by the propagator Go or by the short-range connector S(1, 2). 
Thus, each chain is an alternation of G-pieces, consisting of bridge 
operators connected by propagators Go, and S-pieces, consisting of bridge 
operators connected by short-range connectors S(1, 2). Consider a par- 
ticular S-piece between two G-pieces. The sum of all possible S-pieces at 
this location is precisely the pair connector F(1, 2) given by (6.8). By 
definition of the articulation line, this involves an average over labels not 
correlated with any other labels of the chain. It follows from (3.14), (4.11), 
and (6.10) that 

B(1)F(1, d) B(d)= ~ s f d2...ds6(d-l) 
s--2 l=2 

x ~  (--1) ~ l[n(B)/n(1)n(l)]Mu(B) (8.5) 
(B) 

where 6 ( d - l )  is the Dirac delta function 6(Ra-R)6(Qd--~2l)  and 

J~f(B) ~- ]l~f(B 1 [B 2 I " "  I Bk) = /~f (B1)  aolFl(B2) G o  GoFI(Bk) (8.6) 

This expression contains precisely those subtractions necessary to eliminate 
all articulation lines. We may therefore rewrite the expression as 

B(1)F(1, d) B(d)= s s fd2-..ds6(d-l) 
s=2 l--2 

x ~ {[n(B)/n(1)n(/)] h7~ru(g)}ir r (8.7) 
(B) 

where the subscript irr indicates that the expression in curly brackets is to 
be made irreducible by the appropriate subtractions. By the same 
arguments as given following (6.4), we find for the short-range connector 

S(1, d )=  s Ss(1, d) (8.8) 
s=2 

with $2(1, d) given by (8.4), and for s>~3 

Ss( t, d) = Z s f d2 " " ds 
C l = 2  

• 6(d-/)[n(2) ... n(s)/n(l)] k(C) N1,(C) (8.9) 
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Here the chain correlation function k(C) is given by (7.17) and the nodal 
connector by Dla(C)= M(1)NId(C)M(d) with Dla(C) given by (5.3). The 
expression (8.8) with (8.9) for the short-range connector is exact and valid 
for any finite system of scatterers. 

9. D I S C U S S I O N  

In Section6 we derived the expression (6.10) for the self-energy 
operator X by recognizing that the response of the system to an incident 
wave ~0 may be analyzed in terms of Ornstein-Zernike type equations. In 
the preceding two sections we derived expressions for the reaction field 
operator S(1), which determines the bridge operator B(1) via (7.6), and for 
the short-range connector S(1, 2), which determines the pair connector 
F(1, 2) via (6.8). The expressions are valid for the finite system, but at this 
stage we may take the thermodynamic limit. 

In the thermodynamic limit the density n(1) will become independent 
of the position 111 of scatterer 1. The bridge operator B(1) and the reaction 
field operator S(1) will depend only on the differences r - R 1  and r ' - R , .  
Similarly, the short-range connector S(1, 2) and the pair connector F(1, 2) 
will depend only on the differences r -  R~ and r'--112 and the difference in 
positions R = R 2 -  R1. The self-energy z(q), defined in (2.7), becomes 

z(q)= f d~i n(~l)(qlB(1)tq)lm o 

+ f dg?ldf22dRn(~?l)n(O2)(qlB(1)F(1,2)B(2)lq)lr<= o (9.1) 

where O1 and ~'~2 a re  orientational variables and the matrix element has 
been defined in (2.8). If the scatterers are spherical, then there is no 
dependence on orientational variables and (9.1) simplifies to 

z(q)=n(q[B(1)lq)+nZ f dR(qlB(1)F(1,2) B(2)lq) (9.2) 

where n is the average number density and the center of sphere 1 is taken 
to be at the origin. Here B(1) is given by (7.6) and (7.8), and F(1, 2) is 
given by (6.8) and (8.8). 

So far our equations are exact. In explicit calculations we are forced to 
make approximations that may, however, be made at the level of the 
elementary constituents, i.e., the reaction field operator S(1) given by (7.8) 
and (7.9), and the short-range connector S(1, 2) given by (8.8) and (8.9). It 
may be expected that approximations to these operators, based on the 
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solution of the one-body, two-body, or, at most, the three-body scattering 
problem will yield good results for the self-energy )~(q). The rationale for 
this expectation is that the Ornstein-Zernike structure of the theory 
automatically accounts for repetitions of elementary events. A similar 
situation prevails in the theory of gases, where the Boltzmann equation and 
its Enskog correction, which are based on the same principle, have been 
eminently successful. (~s) 

For future use in approximation schemes it will be worthwhile to have 
the explicit expressions for the two- and three-body contributions to the 
operators S(I) and S(1, 2). From (7.8) and (7.9) we find for the two-body 
contribution to S(1) 

$2(1) = I d2 n(2) k(1, 2) N~(1, 2) (9.3) 

and for the three-body contribution 

$3(1) = f d2 d3 n(2) n(3) 

x [k(1, 2, 3) Nil(l,  2, 3) +k(1, 211, 3) Nl1(1, 211, 3)] (9.4) 

We have used that the nodal connector Nl1(12123) vanishes identically, 
since the label 1 does not occur in the last group. The two-body con- 
tribution to S(1, 2) is given by (8.4), which we repeat here, 

S2(1 , 2)= g(1, 2)[N~2(1, 2 ) -  Go] +h(1, 2) Go (9.5) 

The three-body contribution follows from (8.9) and reads explicitly 

S3(1 , 2) = f d3 n(3)[k(1, 2, 3) N12(1, 2, 3) + k(1,212, 3) N~2(1, 2]2, 3) 

+ k(1, 2, 3) N,2(1, 3,2)+ k(1, 3] l, 2) N12(1, 311, 2) 

+k(1,312, 3) N~2(1, 313, 2)] (9.6) 

In the last three terms we have renamed the labels of the nodal connectors. 
In the nodal connectors the order of the labels is important. Note in 
particular that N12(1, 3, 2) differs from N~2(1, 2, 3). We recall that a nodal 
connector with one or more slashes may be written as a product. For 
example, 

N12(1,212, 3) = N~2(1, 2) M(2) N22(2, 3) (9.7) 

Equation (6.10) for the self-energy operator has appeared in the 
literature. (19) The two contributions were called the diagonal and off- 
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diagonal  parts of  the self-energy operator.  A detailed analysis of 
approximat ions  based on this equat ion has been given by Watabe  and 
Yonezawa. (19) For  example, the so-called quasicrystalline approxima-  
tion (1'2) (QCA)  corresponds to putt ing S ( 1 ) ~ 0  and S(1, 2 ) ~ h ( 1 ,  2)Go.  

A compar i son  of the cluster expansion (3.14) with (4.14) shows that  
approximat ions  to the reaction field opera tor  S(1) and the short-range 
conector  S(1, 2) are to be preferred to approximat ions  obtained directly 
from the cluster expansion, for example, by keeping only the first few 
terms. The advantage  of the present scheme is that  exact resummations are 
performed and approximat ions  are made at a late stage. 

The nature and quality of the approximat ions  will depend on the 
particular problem. Nonetheless, the generality of our  scheme provides a 
unifying viewpoint and allows a compar i son  of a wide variety of  systems. 
As a first applicat ion of the theory, we shall consider in a subsequent 
article the theory of nonpola r  dielectrics. 
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